更多>>精华博文推荐
更多>>人气最旺专家

夏侯审

领域:今视网

介绍:法院书记员06年度个人工作总结个人总结,就是把一个时间段的个人情况进行一次全面系统的总检查、总评价、总分析、总研究,分析成绩、不足、经验等。...

陈锴

领域:中国发展网

介绍:Mn+2(Mn2+)、+4(MnO2)、+7(MnO4-)。w66.con,w66.con,w66.con,w66.con,w66.con,w66.con

w66利来guoji
本站新公告w66.con,w66.con,w66.con,w66.con,w66.con,w66.con
wxn | 2019-01-18 | 阅读(927) | 评论(943)
C考点二 人口增长模式及其转变3.(2013·高考广东卷)下表为四个国家的主要人口指标。【阅读全文】
w66.con,w66.con,w66.con,w66.con,w66.con,w66.con
cie | 2019-01-18 | 阅读(806) | 评论(701)
(三)积极上进,继续学习深造。【阅读全文】
6vh | 2019-01-18 | 阅读(664) | 评论(750)
“它偏游戏化,所以小孩子都喜欢,低年级的学生,比如六七岁,或者七八岁的小朋友,可以先去学scratch,这个对编程也是有帮助的。【阅读全文】
n6r | 2019-01-18 | 阅读(376) | 评论(926)
客人也非常满意。【阅读全文】
ro6 | 2019-01-18 | 阅读(297) | 评论(648)
 微积分基本定理学习目标重点难点1.会用定积分求曲边梯形的面积.2.直观了解微积分基本定理的含义.重点:微积分基本定理及利用定理求定积分.难点:利用定积分求较复杂的图形的面积.微积分基本定理对于被积函数f(x),如果F′(x)=f(x),则eq\i\in(a,b,)f(x)dx=__________,亦即____________=F(b)-F(a).预习交流1做一做:eq\i\in(0,1,)x2dx=________.预习交流2做一做:eq\i\in(0,π,)(cosx+1)dx=________.预习交流3议一议:结合下列各图形,判断相应定积分的值的符号:(1)eq\i\in(a,b,)f(x)dx____0(2)eq\i\in(a,b,)g(x)dx____0(3)eq\i\in(a,b,)h(x)dx____0在预习中还有哪些问题需要你在听课时加以关注?请在下列表格中做个备忘吧!我的学困点我的学疑点答案:预习导引F(b)-F(a) eq\i\in(a,b,)F′(x)dx预习交流1:提示:eq\f(1,3)预习交流2:提示:∵(sinx+x)′=cosx+1,∴eq\i\in(0,π,)(cosx+1)dx=eq\i\in(0,π,)(sinx+x)′dx=sinπ+π-(sin0+0)=π.预习交流3:提示:(1)> (2)< (3)>一、简单定积分的求解计算下列各定积分:(1)eq\i\in(0,2,)xdx;(2)(1-t3)dt;(3)eq\i\in(1,2,)eq\f(1,x)dx;(4)(cosx+ex)dx;(5)eq\i\in(2,4,)t2dx;(6)eq\i\in(1,3,)eq\b\lc\(\rc\)(\a\vs4\al\co1(2x-\f(1,x2)))dx.思路分析:根据导数与积分的关系,求定积分要先找到一个导数等于被积函数的原函数,再据牛顿—莱布尼茨公式写出答案,找原函数可结合导数公式表.1.若eq\i\in(0,1,)(2x+k)dx=2,则k=________.2.定积分sin(-x)dx=________.3.求下列定积分的值:(1)eq\i\in(1,2,)eq\r(x)dx;(2)eq\i\in(2,3,)eq\f(1-x,x2).微积分基本定理是求定积分的一种基本方法,其关键是求出被积函数的原函数,特别注意y=eq\f(1,x)的原函数是y=.求定积分时要注意积分变量,有时被积函数中含有参数,但它不一定是积分变量.3.定积分的值可以是任意实数.二、分段函数与复合函数定积分的求解计算下列定积分:(1)eq\i\in(2,5,)|x-3|dx;(2)sin2xdx;(3)e2xdx思路分析:被积函数带绝对值号时,应写成分段函数形式,利用定积分性质求解.当被积函数次数较高时,可先进行适当变形、化简,再求解.1.设f(x)=eq\b\lc\{\rc\(\a\vs4\al\co1(x2,0≤x1,,2-x,1x≤2,))则eq\i\in(0,2,)f(x)dx=__________.2.(1)设f(x)=eq\b\lc\{\rc\(\a\vs4\al\co1(x2,x≤0,,cosx-1,x0,))求f(x)dx;(2)求eq\r(x2)dx(a>0).1.分段函数在区间[a,b]上的积分可化成几段积分之和的形式,分段时按原函数的各区间划分即可.2.当被积函数的原函数是一个复合函数时,要特别注意原函数的求解,与复合函数的求导区分开来.例如:对于被积函数y=sin3x,其原函数应为y=-eq\f(1,3)cos3x,而其导数应为y′=3cos3x.三、由一条曲线和直线所围成平面图形的面积的求解已知抛物线y=4-x2.(1)求该抛物线与x轴所围成图形的面积;(2)求该抛物线与直线x=0,x=3,y=0所围成图形的面积.思路分析:画出图形,结合图形分析定积分的积分区间,同时注意面积与积分的关系.1.抛物线y=x2-x与x轴围成的图形面积为__________.2.曲线y=cosxeq\b\lc\(\rc\)(\a\vs4\al\co1(0≤x≤\f(3π,2)))与坐标轴所围成的面积为________.3.(2012山东高考)设a>0.若曲线y=eq\r(x)与直线x=a,y=0所围成封闭图形的面积为a2,则a=__________.利用定积分求曲线所围成的平面图形的面积的步骤:(1)根据题意画出图形;(2)找出范围,定出积分上、下限【阅读全文】
kw5 | 2019-01-17 | 阅读(90) | 评论(140)
但是由于条码识别的要求较高,因此在扫描条码的时候,经常出现读不出或者将数据读错的现象。【阅读全文】
bht | 2019-01-17 | 阅读(400) | 评论(72)
本文利用二次轧制后处理方法对钢铜石墨复合板进行实验,提出了将单道次大压下率轧制产生的横向上的不均匀变形,分解到多道次小压下率变形当中,以提升复合板界面剪切强度的均匀性。【阅读全文】
vcj | 2019-01-17 | 阅读(787) | 评论(527)
下面,先学习**党委文件《关于召开*****民主生活会的通知》(**[201*]号文)(读文件)按照民主生活会的程序,我们事先于**月*日通过座谈广泛征求了党内外群众的意见,现把情况通报一下。【阅读全文】
w66.con,w66.con,w66.con,w66.con,w66.con,w66.con
6iz | 2019-01-17 | 阅读(624) | 评论(142)
一个民族没有精神力量难以自立自强,没有文化支撑的事业难以持续长久。【阅读全文】
cou | 2019-01-16 | 阅读(974) | 评论(471)
近期,围绕劳工案件的判决和基金会的解散,日本网络上“反韩”情绪更加滋生,甚至出现了“日韩断交”等字眼。【阅读全文】
4eq | 2019-01-16 | 阅读(631) | 评论(576)
5、网友需要以及网站自身发展需要(我们也承认我们也有自我发展需要的私心),我们网站适应了知识共享和文档电子化是必然趋势和未来发展方向,满足了绝大部分网友查找资料、深造学习进步,快速解决问题……我们不去做,别人也会去这么做,这是无法阻挡的趋势。【阅读全文】
r5c | 2019-01-16 | 阅读(387) | 评论(406)
这位博士爸爸虽然是文科生,但很喜欢电脑游戏,恒恒三年级时,在学校里参加了一个关于scratch的创意社团,他自此开始边自学边教儿子学习。【阅读全文】
xz5 | 2019-01-16 | 阅读(678) | 评论(151)
若这对等位基因存在于X、Y染色体上的同源区段,则不抗病个体的基因型有XbYb和XbXb,而抗病雄性个体的基因型有。【阅读全文】
h5m | 2019-01-15 | 阅读(895) | 评论(732)
 微积分基本定理学习目标重点难点1.会用定积分求曲边梯形的面积.2.直观了解微积分基本定理的含义.重点:微积分基本定理及利用定理求定积分.难点:利用定积分求较复杂的图形的面积.微积分基本定理对于被积函数f(x),如果F′(x)=f(x),则eq\i\in(a,b,)f(x)dx=__________,亦即____________=F(b)-F(a).预习交流1做一做:eq\i\in(0,1,)x2dx=________.预习交流2做一做:eq\i\in(0,π,)(cosx+1)dx=________.预习交流3议一议:结合下列各图形,判断相应定积分的值的符号:(1)eq\i\in(a,b,)f(x)dx____0(2)eq\i\in(a,b,)g(x)dx____0(3)eq\i\in(a,b,)h(x)dx____0在预习中还有哪些问题需要你在听课时加以关注?请在下列表格中做个备忘吧!我的学困点我的学疑点答案:预习导引F(b)-F(a) eq\i\in(a,b,)F′(x)dx预习交流1:提示:eq\f(1,3)预习交流2:提示:∵(sinx+x)′=cosx+1,∴eq\i\in(0,π,)(cosx+1)dx=eq\i\in(0,π,)(sinx+x)′dx=sinπ+π-(sin0+0)=π.预习交流3:提示:(1)> (2)< (3)>一、简单定积分的求解计算下列各定积分:(1)eq\i\in(0,2,)xdx;(2)(1-t3)dt;(3)eq\i\in(1,2,)eq\f(1,x)dx;(4)(cosx+ex)dx;(5)eq\i\in(2,4,)t2dx;(6)eq\i\in(1,3,)eq\b\lc\(\rc\)(\a\vs4\al\co1(2x-\f(1,x2)))dx.思路分析:根据导数与积分的关系,求定积分要先找到一个导数等于被积函数的原函数,再据牛顿—莱布尼茨公式写出答案,找原函数可结合导数公式表.1.若eq\i\in(0,1,)(2x+k)dx=2,则k=________.2.定积分sin(-x)dx=________.3.求下列定积分的值:(1)eq\i\in(1,2,)eq\r(x)dx;(2)eq\i\in(2,3,)eq\f(1-x,x2).微积分基本定理是求定积分的一种基本方法,其关键是求出被积函数的原函数,特别注意y=eq\f(1,x)的原函数是y=.求定积分时要注意积分变量,有时被积函数中含有参数,但它不一定是积分变量.3.定积分的值可以是任意实数.二、分段函数与复合函数定积分的求解计算下列定积分:(1)eq\i\in(2,5,)|x-3|dx;(2)sin2xdx;(3)e2xdx思路分析:被积函数带绝对值号时,应写成分段函数形式,利用定积分性质求解.当被积函数次数较高时,可先进行适当变形、化简,再求解.1.设f(x)=eq\b\lc\{\rc\(\a\vs4\al\co1(x2,0≤x1,,2-x,1x≤2,))则eq\i\in(0,2,)f(x)dx=__________.2.(1)设f(x)=eq\b\lc\{\rc\(\a\vs4\al\co1(x2,x≤0,,cosx-1,x0,))求f(x)dx;(2)求eq\r(x2)dx(a>0).1.分段函数在区间[a,b]上的积分可化成几段积分之和的形式,分段时按原函数的各区间划分即可.2.当被积函数的原函数是一个复合函数时,要特别注意原函数的求解,与复合函数的求导区分开来.例如:对于被积函数y=sin3x,其原函数应为y=-eq\f(1,3)cos3x,而其导数应为y′=3cos3x.三、由一条曲线和直线所围成平面图形的面积的求解已知抛物线y=4-x2.(1)求该抛物线与x轴所围成图形的面积;(2)求该抛物线与直线x=0,x=3,y=0所围成图形的面积.思路分析:画出图形,结合图形分析定积分的积分区间,同时注意面积与积分的关系.1.抛物线y=x2-x与x轴围成的图形面积为__________.2.曲线y=cosxeq\b\lc\(\rc\)(\a\vs4\al\co1(0≤x≤\f(3π,2)))与坐标轴所围成的面积为________.3.(2012山东高考)设a>0.若曲线y=eq\r(x)与直线x=a,y=0所围成封闭图形的面积为a2,则a=__________.利用定积分求曲线所围成的平面图形的面积的步骤:(1)根据题意画出图形;(2)找出范围,定出积分上、下限【阅读全文】
yfw | 2019-01-15 | 阅读(245) | 评论(619)
二、解决女裙后腰下横褶皱的问题2018年3月,我们司接了一批xx证券司分司的制服。【阅读全文】
共5页

友情链接,当前时间:2019-01-18

利来娱乐老牌 利来 利来国际娱乐官方网站 w66.com利来国际 w66.com利来国际
w66利来国际手机app 利来国际w66手机版 利来国际手机客户端 利来国际w66.com 利来国际娱乐老牌
利来国际w66平台 w66利来国际 利来国际w66.com w66.利来国际 利来国际w66网页版
利来娱乐网址 利来国际老牌软件 利来电游彩金 利来国际娱乐平台 利来国际w66手机网页
正蓝旗| 天长市| 志丹县| 武平县| 巩留县| 拉萨市| 巴南区| 贵港市| 寿光市| 祥云县| 四川省| 河北省| 宜宾县| 湖口县| 宣汉县| 稻城县| 丰镇市| 汤阴县| 宜宾市| 东源县| 泉州市| 桦川县| 方正县| 高雄市| 启东市| 和平县| 吉隆县| 辽阳市| 虞城县| 雅江县| 绵阳市| 章丘市| 新巴尔虎左旗| 瓮安县| 万荣县| 卓资县| 南宁市| 工布江达县| 青阳县| 丹巴县| 朔州市| http://m.46930317.cn http://m.23102505.cn http://m.37683656.cn http://m.19841838.cn http://m.84570115.cn http://m.73579833.cn